Original Article

Prognostic Factors of Acute Lymphoblastic Leukeamia in Children

Roshan Perveen* Nuzhat Yasmeen** Khalid Hassan*

Objective To look into the known prognostic factors of Acute Lymphoblastic Leukeamia in Children

Materials and Methods: A retrospective study on children with a diagnosis of acute lymphoblastic leukeamia was conducted at Oncology department, Children Hospital, Pakistan Institute of Medical Sciences Islamabad. All the Leukaemic patients registered form January 2007- August 2009 were included in this study. Their detailed clinical history specially age, sex, lymphadenopathy, hepatosplenomegaly, testicular enlargement, mediastinal masses as well as the CNS disease was thoroughly interrogated. All preinduction investigations including Haemoglobin level, white blood cell Count, Platelet count, peripheral blast count and bone marrow blast count were noted and compared with the post induction values.

Results: Among the children having acute lymphoblastic leukeamia the mean age of presentation was 5 years four month with male to female ratio of 2:1. 58% of patients had hepatomegaly and 60 % had splenomegaly. Pre-induction bone marrow blast count in majority of the patients was \geq 80%. Pre-induction mean WBC count was 26.3 x 10°, mean Hb was 7.1 g/dl, and mean platelet count was 77.1 x 10°. The post-induction WBC count was 3.5 x 10°, mean Hb was 8.9 g/dl and platelet count was 174.2 x 10°. Regarding the FAB classification, 60% of the cases were of ALL-L1; these patients showed a good response in 86% and were categorized prognostically as M1 [on post- induction blast count basis].

Conclusions: Majority of children with ALL had ALL-L1 morphology, having pre-induction bone marrow blast cell count of >80%, which reduced to <1% with multi-agent induction therapy.

Key words: Acute Lymphoblastic Leukeamia, Prognostic Factors, Hepatosplenomegaly, Peripheral blast count, Prednisolone response

*Medical Officer

**Assistant Professor of Oncology

***Professor of Pathology

Address for Correspondence: Dr. Roshan Perveen Department of Pathology The Children Hospital Pakistan Institute of Medical Sciences (PIMS), Islamabad Email:roshanperveen@gmail.com

Introduction

Acute lymphoblastic leukemia (ALL) is the most common malignancy diagnosed in children, representing nearly one third of all pediatric cancers. The annual incidence rate for acute lymphoblastic leukemia is 30.9 cases per million population. The peak incidence occurs in children aged 2-5 years.¹

This disease has been recognized as clinically and morphologically heterogeneous. Morphologically it has been classified according to the FAB (French, American and British) criteria into three subtypes, L1, L2 and L3.²⁻⁴ This system of classification, which is still valid, had been proven to be clinically reproducible.¹⁻³

The current study is planned to verify the incidence of ALL subtypes and their relation to age, sex and clinical and haematological presentations along with response to therapy in our setup. ALL in infancy has

been associated with unfavorable features such as hyperleukocytosis, hepatosplenomegaly, and central nervous system (CNS) disease.^{4, 5} Correlation between various clinical and laboratory characteristics and outcomes has been studied. These factors are interrelated, making it difficult to identify independent prognostic factors. Higher white blood cell (WBC) count with worse outcomes, but the WBC correlates categories for comparison have varied in the different reports.6-8 In the last 30 years, the cure rate in Childhood acute lymphoblastic leukemia (ALL) has increased to 80%.9 Remission induction therapy generally consists of a combination of three or four drugs (vincristine, prednisone, and L-asparaginase, with or without an anthracycline) with CNS prophylaxis, based on the risk classification at diagnosis. This multiagent therapy achieves complete remission (CR) in the vast majority (> 95%) of children with ALL. 10-14

Table I: Baseline characteristics of the study patients (n 50)

		/	
	Number	%	
Age (years)			
Mean <u>+</u> SD	5.4 <u>+</u> 3.1		
Range (min – max)	2 – 12		
Age Distriution			
(years)	0	0	
< 1	9	18	
1 – 2	35	70	
2 – 10	6	12	
10 – 15			
Sex			
Male	33	66	
Female	17	34	
Male : Female Ratio	2:1		

Materials and Methods

A retrospective study on children with a diagnosis of ALL was conducted at Oncology department, Children Hospital, Pakistan Institute of Medical Sciences Islamabad. All the fifty newly diagnosed acute leukaemic patients registered form January 2007- August 2009 were included in this study.

A detailed history and physical examination were conducted, concentrating on the presence of the fever, pallor, tendency. following: bleeding lymphadenopathy, splenic or liver enlargement, neurological and testicular manifestation in males and any radiological evidence for the presence of mediastinal masses. The following haematological investigations were done: Hb concentration, WBC and platelet count using an automated hematology analyzer (Sysmex kx-21). Cytomorphological examination of bone marrow smear had been done.8 The original FAB criteria and the FAB scoring system were used to differentiate between L1 and L2 morphological subtypes.

Statistical analysis: A statistical survey had been done including the percentage, mean and standard deviation on SPSS version 14.

Results

In this study a total of 50 patients were enrolled.

Age & Sex Distribution: In this study of 50 patients, the age ranged from 2–12 years with a mean of 5.4 years. Male gender was in dominance in the study with 66% presentation. Male to female ratio was 2: 1.Table I

Lymphadenopathy, Liver and Spleen status (Table 2): In 25 (50.0%) cases the palpable lymph nodes were > 3 cm and in remaining 25 (50.0%) < 3 cm in diameter. Out of total 50 cases, in 2 (4.0%) the liver was found

mildly enlarged while in 27 (54.0%) it was moderately enlarged. As regards spleen, in 6 (12.0%) cases it was mildly enlarged; it was moderately enlarged in 24 (48.0%) cases while 1 patient had spleen was palpable beyond umbilicus.

Masses and other manifestations: It was found that in 3 (6.0%) cases the testicles had enlargement and only in 1 (2.0%) patient a mediastinal mass was found. None of the study patients had CNS disease.

Table II: Lymphadenopathy, Liver and Spleen status in study patients (n = 50)

	Number	%
Lymphadenopathy		
> 3 cm	25	50
< 3 cm	25	50
Liver		
Not palpable	21	42
Mild enlarged	2	4
Moderate enlarged	27	54
Markedly enlarged	0	0
Spleen		
Not palpable	1	2
Mild enlarged	19	38
Moderate enlarged	6	12
Markedly enlarged	24	48

Blast cells in peripheral blood (%): In a total 50 cases, 14 (28.0%) had percentage < 20 on peripheral film. Seven (14.0%) cases each had blast between 21% to 30% and 31 to 40%. Another 6 (12.0%) cases had blast between 41 and 51%, 7 (14.0%) had blast between 51 and 70% while 9 patients had blast of more than 70% on peripheral film.

Blast cells in the bone marrow smears: Majority of patient (60%) showed >80% blats in the bone marrow smears. In only 18%, these cells were \leq 50%, and in the remaining 22% between 51 and 80%.

FAB Classification and bone marrow status: Thirty (60.0%) patients had FAB class of ALL-L1, 16 (32.0%) had ALL-L2 while in 4 (8.0%) cases the FAB class could not be determined. Similarly, majority 43 (86.0%) of the study patients had good response to prednisolone while only 7 (14.0%) had poor response. The distribution of bone marrow according to classes showed that majority 44 (88.0%) cases belonged to M1, 3 (6.0%) to M2 and 3 (6.0%) of the patients were from M3 class of bone marrow. Table III

Table III: FAB types, response to induction therapy and bone marrow status (n 50)

	Number	%
FAB class		
ALL-L1	30	60
ALL-L2	16	32
Not determined	4	8
Response to Induction		
therapy	6	12
Poor	44	88
Good		
Bone marrow status		
M1	44	88
M2	3	6
M3	3	6

Post induction bone marrow blasts: The majority of the cases 40 (80.0%) had < 1% bone marrow blast after induction therapy was completed. Amongst the remaining cases 2 (4.0%) had < 2% blast, 1 had bone marrow blast between 3 and 5 % while 7 (14.0%) patients had post induction blast of 5% or above.

Pre and post induction status of WBCs, Hb level and platelets, Table IV:

Table IV: Hematological findings pre and post induction (n 50)

post madetion (ii 30)					
Parameters	Pre- Induction Range Mean <u>+</u> SD	Post-Induction Range Mean <u>+</u> SD	p- value		
WBCs	3.1 – 488	2.5 - 12.5	0.05		
(x10 ⁹ /l)	26.30 <u>+</u> 76.22	3.54 <u>+</u> 3.32			
Hemoglobin	2.5 – 13.0 7.1 <u>+</u> 2.4	3.8 – 11.4 8.9 <u>+</u> 1.6	<0.001		
Platelets	363 – 419 77.14 <u>+</u> 98.1	4 – 634 174.3 <u>+</u> 170.21	0.002		

The average pre induction WBC was 26.31 x $10^9/\text{I}$ with range from 3.1 to 48.8 x $10^9/\text{I}$ while the average post induction WBCs were 3.5 x $10^9/\text{I}$ with range from 2.5 to 12.5 x $10^9/\text{I}$. The difference between means was found statistically significant (p 0.05). The mean hemoglobin level pre-induction was 7.1 ranging from 7.1 ranging

mean platelet counts was found to be statistically significant (p 0.002).

Discussion

There is considerable variation in risk classification of ALL used by the major clinical trial groups treating paediatric cancers. Since mature B cell ALL (FAB type ALL-L3) is treated differently from precursor B or T cell ALL (FAB type ALL-L1 or L2). For the most part, these systems for the treatment of B-precursor ALL (and sometimes T-cell ALL) are based on age and WBC at diagnosis, prognostic features which have consistently been found to be important. In our study 70% of children presented were between the ages of 2-10 years while male to female ratio was 2:1. Mean pre-induction WBC count in our study was 26.300 x 109/L.

In addition to the time-honored features of age and WBC, the presence of extramedullary disease (CNS or overt testicular involvement) is a factor used to determine the intensity of treatment. Overt CNS leukemia is more common in T-cell ALL than in Bprecursor ALL¹⁷, occurs in fewer than 5% of children at diagnosis, and is generally predictive of a poor treatment outcome. ¹⁸ However in our study none of the patients had CNS involvement that showed good response to therapy. Overt testicular involvement at diagnosis is even less common. A series from St. Jude reported the incidence to be 1.9% of boys¹⁹, although occult testicular disease has been found by biopsy in as many as 25% of newly diagnosed boys. 20 In our study the testicular enlargement was 6%. Slow early response to induction has been defined in several ways: the presence of any circulating blasts following one week of multiagent induction²¹, or greater than 25% blasts in the marrow on day 7 of induction.²² All of these findings have been found to be important predictors of an adverse outcome, although intensified therapy appears to abrogate the prognostic significance of a slow early response.²³ Slow clearance of peripheral blasts has also been found to be an adverse prognostic feature in T-cell ALL and Ph+ ALL. 21, 24, 25 In our study 88% of the patients show good response to prednisolone and had bone marrow status of M1 (<5%) blasts. Only 6% were in stage M2 (blasts between 5-25%) and another 6% were in stage M3 (blasts >25%).

Conclusion

Most of the patients with ALL were between 2-10 years of age. the male to female ratio was 2:1. The lymphadenopathy and hepatosplenomegaly features were found in most patients. Majority of the children with ALL had ALL L1 morphology, having pre-induction bone marrow blast count of > 80% which reduced to < 1%

blast with multi agent induction therapy. The comparative hematological parameters like Hemoglobin, WBC count and Platelet count were also suggestive of improvement.

References

- Miller DR, Leikin S, Albo V, et al. Prognostic importance of morphology -FAB classification- in childhood acute lymphoblastic leukaemia –ALL. Br J Haematol 1981; 48:199-206.
- Ching-Hon Pui. Acute lymphoblastic leukaemia; chap.97in William s Haematology; 6 th edn. 2001:1141-61.
- 3. Viana MB, Maurer HS, Ferencec. Sub- classification of acute lymphoblastic leukaemia in children: Analysis of the reproducibility of morphological criteria and prognostic implication. Br J Haematol 1980;44:383-8. 1. Pui CH, Relling MV, Downing JR: Acute lymphoblastic leukemia. N Engl J Med 350:1535-1548, 2004
- Reaman GH, Sposto R, Sensel MG, et al. Treatment outcome and prognostic factors for infants with acute lymphoblastic leukemia treated on two consecutive trials of the Children's Cancer Group. J Clin Oncol. 1999;17: 445-455.
- Ferster A, Bertrand Y, Benoit Y, et al. Improved survival for acute lymphoblastic leukemia in infancy: the experience of EORTC-Childhood Leukaemia Cooperative Group. Br J Haematol. 1994;86: 284-290.
- Chessels JM, Harrison CJ, Watson SL, Vora AJ, Richards SM. Treatment of infants with lymphoblastic leukaemia: results of the UK Infant Protocols 1987-1999. Br J Haematol. 2002;117: 306-314.
- 7. Frankel LS, Ochs J, Shuster JJ, et al. Therapeutic trial for infant acute lymphoblastic leukemia: the Pediatric Oncology Group experience (POG 8493). J Pediatr Hematol Oncol. 1997;19: 35-42.
- Dördelmann M, Reiter A, Borkhardt A, et al. Prednisone response is the strongest predictor of treatment outcome in infant acute lymphoblastic leukemia. Blood. 1999;94: 1209-1217.
- Silverman SB, McLean TW, Gelber RD, et al. intensified therapy for infants with acute lymphoblastic leukemia: results from the Dana-Farber cancer institute consortium. Cancer. 1997;80: 2285-2295.
- Gaynon PS, Trigg ME, Heerema NA, et al: Children's Cancer Group trials in childhood acute lymphoblastic leukemia: 1983-1995. Leukemia 14:2223-2233, 2000
- Gustafsson G, Schmiegelow K, Forestier E, et al: Improving outcome through two decades in childhood ALL in the Nordic countries: The impact of high-dose methotrexate in the reduction of CNS irradiation—Nordic Society of Pediatric Haematology and Oncology (NOPHO). Leukemia 14:2267-2275, 2000
- Harms DO, Janka-Schaub GE: Co-operative study group for childhood acute lymphoblastic leukemia (COALL): Long-term followup of trials 82, 85, 89 and 92. Leukemia 14:2234-2239, 2000

- Schrappe M, Reiter A, Ludwig WD, et al: Improved outcome in childhood acute lymphoblastic leukemia despite reduced use of anthracyclines and cranial radiotherapy: Results of trial ALL-BFM 90—German-Austrian-Swiss ALL-BFM Study Group. Blood 95:3310-3322, 2000
- Silverman LB, Gelber RD, Dalton VK, et al: Improved outcome for children with acute lymphoblastic leukemia: Results of Dana-Farber Consortium Protocol 91-01. Blood 97:1211-1218, 2001
- Crist W, Pullen J, Boyett J et al. Clinical and biologic features predict a poor prognosis in acute lymphoid leukemias in infants: a Pediatric Oncology Group study. Blood 1986; 67:135-140.
- Pui CH, Crist WM. Biology and treatment of acute lymphoblastic leukemia. J Pediatr 1994; 124:491-503.
- Sallan SE, Ritz J, Pesandro J et al. Cell surface antigens: prognostic implications in childhood acute lymphoblastic leukemia. Blood 1980:55:395-402.
- 18. Pinkel D, Woo S. Prevention and treatment of meningeal leukemia in children. Blood 1994;84:355-366
- Gajjar A, Ribeiro RC, Mahmoud HH et al. Overt testicular disease at diagnosis is associated with high risk features and a poor prognosis in patients with childhood acute lymphoblastic leukemia. Cancer 1996:78:2437-2442.
- Kim TH, Hargreaves HK, Byrnes RK et al. Pretreatment testicular biopsy in childhood acute lymphocytic leukemia. Lancet 1981;2:657-658.
- Crist W, Boyett J, Pullen J et al. Clinical and biological features predict poor prognosis in acute lymphoid leukemias in children and adolescents: a Pediatric Oncology Group review. Med Pediatr Oncol 1986;14:135-139.
- Gajjar A, Ribeiro R, Hancock ML et al. Persistence of circulating blasts after 1 week of multiagent chemotherapy confers a poor prognosis in childhood acute lymphoblastic leukemia. Blood 1995;86:1292-1295.
- Steinherz PG, Gaynon PS, Breneman JC et al. Cytoreduction and prognosis in acute lymphoblastic leukemia—the importance of early marrow response: report from the Children's Cancer Group. J Clin Oncol 1996;14:389-398.
- 24. Nachman J, Sather HN, Gaynon PS et al. Augmented Berlin-Frankfurt-Munster therapy abrogates the adverse prognostic significance of slow early response to induction chemotherapy for children and adolescents with acute lymphoblastic leukemia and unfavorable presenting features: a report from the Children's Cancer Group. J Clin Oncol 1997;15:2222-2230.
- Griffin TC, Shuster JJ, Buchanan GR et al. Slow disappearance of peripheral blood blasts is an adverse prognostic factor in childhood T cell acute lymphoblastic leukemia: a Pediatric Oncology Group study. Leukemia 2000:14:792-795.